Abstract
본 연구는 LANDSAT TM영상을 이용하여 도농중심도시인 김제시의 토지이용변화를 분석하고 미래 변화예측을 시도한 것이다. 감독분류 시 새로운 시도로 훈련영역 선정 시 HSB(Hue, Saturation, Brightness) 변환영상을 이용함으로써 약 5% 이상의 분류정확도 향상을 가져왔다. 분류결과와 해당지역의 구역 별 인구, DEM, 도로망, 수계 등 GIS데이터를 고려하여 셀룰라오토마타 알고리즘을 발전시킨 Markov Chain 기법으로 토지이용변화예측을 실시하였다. 토지변화비율을 비교 분석한 결과 지형적인 특성이 토지이용의 변화에 가장 크게 영향을 미치는 것으로 판단되었다. 또한 2030년 후의 토지이용변화 예측 결과 김제시 전체에서 산악지의 21.67%가 농경지로 13.11%는 시가지로 변화될 것으로 예측되었다. 주된 변화는 도심 중심부에 위치한 규모가 작은 산악지인 것으로 예측 되었다. 연구결과 미래의 토지이용변화를 예측함으로써 식량자원의 확보를 위한 도농도시의 토지이용계획에 도움이 될 것으로 확신한다. This study attempts to analyze changes in land use patterns in a compound urban and agricultural city Kimje-si, using LANDSAT TM imagery and to forecast future changes accordingly. As a new approach to supervised classification, HSB(Hue, Saturation, Brightness)-transformed images were used to select training zones, and in doing so classification accuracy increased by more than 5 percent. Land use changes were forecasted by using a cellular automaton algorithm developed by applying Markov Chain techniques, and by taking into account classification results and GIS data, such as population of the pertinent region by area, DEMs, road networks, water systems. Upon comparing the results of the forecast of the land use changes, it appears that geographical features had the greatest influence on the changes. Moreover, a forecast of post-2030 land use change patterns demonstrates that 21.67 percent of mountain lands in Kimje-si is likely to be farmland, and 13.11 percent is likely to become city areas. The major changes are likely to occur in small mountain lands located in the heart of the city. Based on the study result, it seems certain that forecasting future land use changes can help plan land use in a compound urban and agricultural city to procure food resources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Korean Society for Geospatial Information System
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.