Abstract

The effect of small additions of copper on the microstructure and physic-mechanical properties of an ultrafine-grained Al-1.47Cu-0.34Zr (wt%) alloy structured by high pressure torsion after preliminary annealing at 375 °C for 140 h has been studied. As a result of processing, high values of strength characteristics (conditional yield strength 430 MPa, ultimate tensile strength 574 MPa) with an acceptable level of electrical conductivity (46.1% IACS) and ductility (elongation to fracture ~ 5%) have been achieved. On the basis of the microstructural parameters determined by X-ray diffraction analysis and transmission electron microscopy, hardening mechanisms responsible for such high strength have been analyzed. It was shown that Cu plays the key role in strengthening. The addition of copper significantly contributes to grain refinement and, consequently, to grain-boundary hardening. Alloying with copper leads to significant additional hardening (~ 130 MPa) in the ultrafine-grained alloy, which is not typical for coarse-grained state. Segregation of Cu at grain boundaries and the formation of Cu nanoclusters are the most probable reasons for this hardening.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call