Abstract
Commercial MgAlZn alloy AZ31 was processed by two techniques of severe plastic deformation (SPD)—extrusion followed by equal channel angular pressing (EX-ECAP), and high pressure torsion (HPT). Processing by ECAP was conducted at elevated temperature of 180 °C for 1–12 passes following route BC. HPT was applied at room temperature, and the specimens of the diameter of 19 mm with different number of turns (N = ¼ − 15) were prepared. Mechanical properties and grain fragmentation with strain due to EX-ECAP and HPT were investigated by Vickers microhardness measurements and transmission electron microscopy, respectively. Variations in dislocation density were investigated by positron annihilation spectroscopy. Differences in microhardness, grain refinement and dislocation density evolution resulting from principal differences of straining were found in the specimens. EX-ECAP resulted in homogeneous microstructure throughout the specimen's cross section as early as after four passes. On the other hand, laterally inhomogeneous microstructure with gradual reduction of grain sizes from the centre towards the periphery of the disk was observed in specimens after HPT. This microstructure and microhardness inhomogeneities were continuously smeared out and almost homogeneous ultrafine-grained structure was observed in specimen subjected to 15 HPT turns. Variations in mechanical properties and dislocation density evolution were compared in conditions corresponding to the same equivalent strain imposed by both techniques of SPD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.