Abstract

The propagation of nonlinear localized soliton-like super-acoustic longitudinal waves in a carbon nanotube was explored by the molecular dynamics modeling. Ring waves were excited by pulsed action on all the atoms of the edge zigzag layer and they got an initial velocity along the axis of the nanotube. It was shown that the velocity of a localized (soliton-like) ring super-acoustic wave increased with an increase in the initial velocity of the edge atoms. The calculated dependence of the propagating wave velocity on the initial velocity of the edge atoms was given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.