Abstract
Research was carried out to determine the optimal modes for the simultaneous processing of lumber and polycaproamide threads in a hybrid microwave electrotechnological installation. The work was carried out on an installation with a hybrid-type chamber with adjustment of the microwave power level of the magnetrons and the duration of exposure. Two possible designs of a hybrid installation for processing lumber and polycaproamide threads are presented, differing in that in one the lumber was processed inside the chamber, and the polycaproamide threads were pulled through waveguides using bobbins and an electric motor installed outside the chamber, and in the second, both materials were processed inside the installation chamber. The object of research is lumber and polycaproamide threads. Lumber was loaded into the working chamber in the form of a stack, which rotated along its axis, and a structure was examined in which polycaproamide threads were pulled through a waveguide extending from a source of microwave energy outside the chamber. The time of exposure to microwave radiation on lumber and half-caproamide threads was measured using electronic stopwatches; temperature and humidity were measured using a Testo 905T2 thermometer, a Testo 830T1 pyrometer, and a Testo 606-1 digital hygrometer. The use of a hybrid microwave electrotechnological installation reduced the processing time of lumber due to rotation in the microwave field to 15 hours, while ensuring the required quality of the dried material (final moisture content - 7.1%, reduction in chipping and impact bending strength within 5%). The relative breaking elongation of polycaproamide threads increased by 48.2%, and the breaking load – by 27.6%. Thanks to the simultaneous processing of lumber and polycaproamide threads, it is possible to reduce metal consumption and increase the energy efficiency of the installation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.