Abstract
도심지 모델링과 분석을 효과적으로 수행하기 위해서는 다른 시기나 다른 지역의 추가적인 고해상도 위성영상이 반드시 필요하다. 그러나 같은 지상 개체라 하더라도 서로 다른 영상에서 방사적인 불일치가 존재하며 이는 영상 처리와 분석의 정확도를 저하시키는 원인이 된다. 더욱이 도심지의 경우 건물, 수목, 교량, 기타 구조물 등 높이를 갖는 개체들은 영상 전체에 걸쳐 그림자를 발생시키며 이는 상대 방사 정규화의 질을 저하시킨다. 본 연구에서는 태양과 위성의 기하학적 위치 정보, 부가적인 수치 표고 모델이 없어도 적용이 가능한 단영상 기반의 그림자 추출기법을 적용하고 그림자의 영향을 배제한 선택적인 히스토그램 매칭 기법을 제안하였다. 건물의 에지 버퍼 영역에 대한 인접 정보와 분할을 통해 생성된 객체의 공간 및 분광인자를 이용하여 그림자를 추출한 후, 아스팔트 도로와 같이 그림자로 잘못 추출된 이상 객체를 제거하였다. 최종적으로 그림자 지역이 마스킹 된 Quickbird-2 다시기 영상을 이용하여 비그림자 지역만을 이용하여 선택적 히스토그램 매칭을 수행하였다. Additional high resolution satellite images, other period or site, are essential for efficient city modeling and analysis. However, the same ground objects have a radiometric inconsistency in different satellite images and it debase the quality of image processing and analysis. Moreover, in an urban area, buildings, trees, bridges, and other artificial objects cause shadow effects, which lower the performance of relative radiometric normalization. Therefore, in this study, we exclude shadow areas and suggest the selective histogram matching methods for image based application without supplementary digital elevation model or geometric informations of sun and sensor. We extract the shadow objects first using adjacency informations with the building edge buffer and spatial and spectral attributes derived from the image segmentation. And, Outlier objects like a asphalt roads are removed. Finally, selective histogram matching is performed from the shadow masked multi-temporal Quickbird-2 images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Korean Society for Geospatial Information System
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.