Abstract

AbstractThe photoconductivity of condensates of lead-sulfide quantum dots (QDs)—QD solids—with various organic ligands is studied. It is demonstrated that the QD solid photoconductivity increases exponentially with a reduction in length of ligand molecules and does not depend on their chemical structures, since it is governed by hopping transport of charge carriers. In contrast, the photocurrent in photovoltaic ITO/PEDOT: PSS/PbS/ZnO/Al elements depends on the ligand structure, since this structure sets the positions of QD energy levels and thus affects the efficiency of charge carrier transfer to electrodes. The difference between mechanisms of generation of photoconductivity and photovoltaic currents is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.