Abstract

The pyrolysis of acetylene was studied experimentally in a cyclic compression reactor in an atmosphere of buffer inert gases (argon, neon, helium). A significant difference in the thermodynamic conditions for the complete pyrolysis of the precursor for various buffer gases was revealed. The reaction products of acetylene in neon and helium contained up to 20% of the part soluble in organic solvents. The study of the ethanol-soluble part of the product using time-of-flight mass spectrometry with matrix-assisted laser desorption/ionization made it possible to distinguish even and odd branches in the spectrum of substances by the number of carbon atoms. A mechanism is proposed for the formation of larger particles by merging smaller ones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call