Abstract
위치기반 소셜 미디어 데이터는 빅데이터, 위치기반서비스 등 다양한 분야에서 활용가능성이 매우 큰 데이터이다. 본 연구에서는 위치기반 소셜 미디어 데이터의 텍스트 정보를 분석하여 주요한 키워드들이 공간적으로 어떻게 분포하고 있는지를 파악할 수 있는 일련의 분석방법론을 적용해보았다. 이를 위해, 위치태그를 지닌 트윗 데이터를 서울시 강남지역과 그 주변지역에 대하여 2013년 8월 한달 간 수집하였으며, 이 데이터를 대상으로 하여 텍스트 마이닝을 통해 주요 키워드들을 도출하였다. 이러한 키워드들 중 음식, 엔터테인먼트, 업무 및 공부의 세 카테고리에 해당하는 키워드들만 추출, 분류하였으며 각 카테고리에 해당하는 트윗 데이터들에 대해서 공간적 클러스터링을 실시하였다. 도출된 각 카테고리별 클러스터들을 실제 그 지역의 건물 또는 벤치마크 POI들과 비교한 결과, 음식 카테고리 클러스터는 대규모 상업지역들과 일치도가 높았고 엔터테인먼트 카테고리의 클러스터는 공연장, 극장, 잠실운동장 등과 일치하였다. 업무 및 공부 카테고리 클러스터들은 학원 밀집지역 및 사무용 빌딩 밀집지역과 높은 일치도를 나타내었다.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Korean Society for Geospatial Information System
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.