Abstract
A theoretical model for the formation of ultrasonic signals in metallic microcrystalline rods taking into account the metastable behavior of their defective states is proposed. The influence of metastable states of the defective structure of samples on the features of changes in their resonant frequencies in ultrasonic experiments of fast dynamics is analyzed. The decrease in Young's modulus in such processes is explained. The correspondence between theoretical and experimental data is demonstrated for the example of resonant acoustic vibrations of rods made of aluminum alloy D16.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.