Abstract

The process of growth of a multicomponent crystal at elevated supersaturations, in cases where the classical approximation of the immobility of atomic steps becomes incorrect, has been studied. Analytical expressions are derived that describe the rate of advancement of an ensemble of steps on a crystalline surface. The crystal growth rate is determined via layer-by-layer and spiral mechanisms. It is shown that the rate can differ significantly from the predictions of the classical theory of crystal growth. The results can be used to optimize the growth processes of both bulk crystals and thick epitaxial films of various multicomponent compounds and, in particular, semiconductor compounds of groups A3B5 and A2B6.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call