Abstract

It is well known that both intramolecular and intermolecular hydrogen bonding can lead to drastic changes in the lifetime of the first excited singlet state. By employing a synchronously pumped, mode-locked dye-laser for excitation in connection with a continuously operated streak camera for detection, the solvent-dependent fluorescence decay times of several indigo derivatives were determined with high temporal resolution (∼5 ps with deconvolution). It is found that in indigo dyes intramolecular hydrogen bonding gives rise to a strong fluorescence quenching; intermolecular hydrogen bonding can also provide a channel for fast radiationless deactivation in those derivatives in which the former are not present.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.