Abstract

The article presents main changes in atmospheric aerosol parameters due to the dust emission from the drained areas of the Kakhovka Reservoir and confirms the formation of a new source of aerosol pollution. The research was conducted using data on aerosol optical depth (AOD), Angstrom exponent, and aerosol mass fraction from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument with support from LandSat satellite underlay surface images. An increase in AOD over the reservoir was established, resulting in a less pronounced change (-15%) during the fall compared to the regional background decrease of 50%. An increase in the aerosol mass fraction over the drained areas of the Kakhovka Reservoir was identified to be at least twice as much. Changes in the Angstrom exponent were identified, indicating a redistribution of the predominant size of aerosol particles in the atmospheric air. The frequency of cases with a predominance of the coarse fraction increased, while that of the fine fraction decreased. However, due to similar trends across the entire left bank of the Kherson region, it is currently impossible to be certain about the defining role of drying. At the same time, two indicators of changes in the Angstrom exponent suggest a shift in the size distribution of aerosol particles after the dam breach: an increased frequency of cases with an Angstrom exponent within 0.5-1.0, approaching the values over the Oleshky Sands; and a decrease in the frequency of cases with a predominance of the fine particles in October, unlike other territories. We emphasized the need for further monitoring of dust emissions into the atmosphere and modifications to emission inventories from natural sources for numerical atmospheric modeling purposes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.