Abstract

Perennial increase in atmospheric pollution over the Bay of Bengal (BoB) and South China Sea is reported due to increase in human population and industrial activity in South and Southeast Asia. Based on total aerosol optical depth (AOD) derived from MODIS (moderate resolution imaging resolution imaging spectroradiometer), natural and anthropogenic fractions were derived. The seasonality and spatial variability in rate of increase in total, natural, and anthropogenic AOD fractions were examined over the BoB using data collected between 2001 and 2019. Both total and anthropogenic AOD displayed statistically significant rate of increase in the northwest BoB (NWB) and western coastal BoB (WCB) regions during 2001 to 2019 whereas the long-term changes are insignificant in the other regions of BoB. Significant increase in AOD in the NWB and WCB regions is mainly contributed by dominant outflow of anthropogenic emissions from Indo-Gangetic Plain (IGP) area of Indian subcontinent. The magnitude of AOD decreased by half from northern BoB to equatorial region due to increase in distance from the source region. The contribution of anthropogenic AOD was >70% to total AOD with higher contribution during winter and lower during summer. The rate of increase in both total and anthropogenic AOD was close to 0.104 and 0.099 per decade in the NWB and 0.069 and 0.059 per decade in the WCB region between 2001 and 2019. The rate of increase in total and anthropogenic AOD decreased from 2001-2009 (0.164 and 0.115 per decade respectively) to 2010-2019 (0.068 and 0.076 per decade respectively) in the NWB region. Significant increase in anthropogenic AOD by 50 and 30% was observed during El Niño and La Niña periods respectively than normal year in both northwest BoB (NWB) and western coastal (WCB) regions due to change in strength and direction of winds. Although some fraction of anthropogenic AOD is found over the entire BoB, significant rate of increase in anthropogenic AOD is found only about 23% of the area of BoB than hitherto reported as entire BoB. The impact of atmospheric deposition of anthropogenic aerosols on biogeochemical processes, such as primary production and ocean acidification, needs further evaluation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.