Abstract
The study of curvature operator properties, in particular, the one-dimensional curvature operator, is interesting for the understanding of the geometrical and topological structure of a homogeneous (pseudo)Riemannian manifold. In general case, this problem is quite difficult. Therefore, it is necessary to impose restrictions either on the class of manifolds or their dimension. An application of analytical calculation systems is possible if the dimension is finite. In this paper, mathematical and computer models for determining the components of the one-dimensional curvature operator and its spectrum (the set of eigenvalues) of non-reductive homogeneous (pseudo)Riemannian manifolds of a finite dimension are developed. The investigation of one-dimensional curvature operator spectrum on non-reductive homogeneous Lorentzian manifolds of dimension 4 is performed by implementing this algorithm in Maple software. Also, a symmetric operator with a matrix corresponding to a matrix of the one-dimensional curvature tensor is defined, and the problem of this operator possible signature existence on four-dimensional non-reductive homogeneous Lorentzian manifolds is studied.
Highlights
Изучение свойств операторов кривизны, в частности оператора одномерной кривизны, представляет интерес в понимании геометрического и топологического строения однородногориманова многообразия
An application of analytical calculation systems is possible if the dimension is finite
The investigation of one-dimensional curvature operator spectrum on non-reductive homogeneous Lorentzian manifolds of dimension 4 is performed by implementing this algorithm in Maple software
Summary
В частности оператора одномерной кривизны, представляет интерес в понимании геометрического и топологического строения однородного (псевдо)риманова многообразия. Поэтому задача об исследовании сигнатур оператора одномерной кривизны может оказаться корректной лишь для симметрического оператора A, матрица которого соответствует матрице тензора одномерной кривизны. Алгебра Ли g есть алгебра sl(2, R) ⊕ s(2) размерности пять (где s(2) двумерная разрешимая алгебра) с ненулевыми структурными уравнениями [e1, e2] = 2e2, [e1, e3] = −2e3, [e2, e3] = e1, [e4, e5] = e4.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.