Abstract

AbstractThe admittance measurements of heterostructures with quantum wells (QW) In_ x Ga_1 – x As/GaAs (0.19 ≤ x ≤ 0.3) precisely grown by the MOCVD method were carried out. By means of the admittance spectroscopy method, the resonant tunneling emission was for the first time registered as the determining mechanism inducing high-frequency conductance of doped heterostructures with QW, the separation of tunnel and resonant tunneling contributions was carried out, and the influence of tunnel component on the total rate of carrier emission from QW was analyzed. The self-consistent simulation of capacitance–voltage characteristics of the structures was performed, and the transmittance of the system formed by the Hartree potential around QW was calculated. Experimentally and by numerical calculations, it is shown that the probability of resonant tunneling emission decreases with increasing reverse bias due to the broken symmetry of the barriers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.