Unlike differentiated somatic cells, which possess elongated mitochondria, undifferentiated cells, such as those of preimplantation embryos, possess round, immature mitochondria. Mitochondrial morphology changes dynamically during cell differentiation in a process called mitochondrial maturation. The significance of the alignment between cell differentiation and mitochondrial maturity in preimplantation development remains unclear. In this study, we analyzed mouse embryos into which liver-derived somatic mitochondria were introduced (SM-embryos). Most SM-embryos were arrested at the two-cell stage. Some of the introduced somatic mitochondria became round, while others remained elongated and large. RNA-sequencing revealed a disruption of both minor and major zygotic gene activation (ZGA) in SM-embryos. Minor ZGA did not terminate before major ZGA, and the onset of major ZGA was inhibited, as shown by histone modification analyses of histone H3 lysine 4 trimethylation and histone H3 lysine 27 acetylation. Further analysis of metabolites involved in histone modification regulation in SM-embryos showed a significantly lower NAD+/NADH ratio in SM-embryos than in control embryos. Additionally, the mitochondrial membrane potential, an indicator of mitochondrial function, was lower in SM-embryos than in control embryos. Our results demonstrated that introducing somatic mitochondria into an embryo induces mitochondrial dysfunction, thereby disrupting metabolite production, leading to a disruption in ZGA and inducing developmental arrest. Our findings reveal that the alignment between cell differentiation and mitochondrial maturity is essential for early embryonic development.
Read full abstract