Abstract This work presents the fabrication of high-dense titanium carbide – titanium boride (TiC-TiB2) composites by self-propagating high temperature synthesis (SHS) under-load methodology. The influence of particle size of boron carbide (B4C) and the amount of titanium (Ti) on the TiC-TiB2 composites properties is explored. The structural features and crystalline structures of the prepared composites were systematically characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The influence of zirconia (ZrO2) additives on the mechanical properties of prepared composites is explored and explained. The obtained results reveal that ZrO2 additives have a significant influence on the mechanical properties of TiC-TiB2 composites. An addition of 20 wt% ZrO2 results in a maximum enhancement of 1805 HV in comparison to 1683 HV for as-produced TiC-TiB2 composite. Detailed thermodynamic study of the effect of ZrO2 on the combustion process is also presented. Our results provide novel insights into the fabrication of TiC-TiB2 – based composites, establishing for the first time the influence of zirconia additives on the mechanical properties of the resulting composites, opening new opportunities to develop advanced composites for structural applications.