The aim of this study was to molecularly survey Bartonella spp. in rodents from the Valdivia Province, Southern Chile and from wild black rat-fleas in Guafo Island, Chilean Patagonia. Thrity-three spleens from synanthropic (Mus musculus, Rattus novergicus and Rattus rattus) and wild (Abrothrix longipilis, Oligoryzomys longicaudatus, Abrothrix sp.) rodents from Valdivia and 39 fleas/flea-pools (Plocopsylla sp. and Nosopsyllus sp.) from R. rattus in Guafo Island were obtained. All samples were screened by high-resolution melting (HRM) real-time PCR for Bartonella ITS locus (190 bp). ITS-Positive samples were further analyzed for two HRM real-time PCR assays targeting Bartonella rpoB (191 bp) and gltA (340 bp) gene fragments. All positive ITS, gltA and rpoB real-time PCR products were purified and sequenced. Bayesian inference trees were built for the gltA and rpoB gene fragments. Bartonella-ITS DNA was detected in 36.3% (12/33) [95% CI (22–53%)] of the tested rodents from Valdivia, being identified in all but O. longicaudatus rodent species captured in this study. ITS DNA was detected in 28% (11/39) [95% CI (16-43%)] of fleas/flea-pools from Guafo Island and identified in both Plocopsylla and Nosopsyllus genera. Sequencing and phylogenic analyses targeting three loci of Bartonella spp. allowed the identification of five genotypes in rodents from Southern Chile, potentially belonging to three different Bartonella spp. Those included Bartonella tribocorum identified from R. rattus, Bartonella rochalimae detected from Abrothix sp., and one novel genotype from uncharacterized Bartonella sp. identified in M. musculus, R. norvegicus, A. longipilis, and Abothrix sp., related to strains previously isolated in Phyllotis sp. from Peru. Additionally, two genotypes of B. tribocorum were identified in fleas from Guafo. In a nutshell, highly diverse and potentially zoonotic Bartonella spp. are described for the first time in wild and synanthropic rodents from Chile, and B. tribocorum was detected in wild back rat fleas from Guafo Island.
Read full abstract