Simulations of 5th version of INM RAS (Institute of Numerical Mathematics of the Russian Academy of Science) climate model performed in the framework of CMIP6 project for the future climate under ssp2–4.5 (moderate) and ssp5–8.5 (business as usual or hard) scenarios of green house gases (GHG) increase are employed to analyze temperature, zonal mean wind, stratospheric polar vortex, planetary wave activity, meridional circulation, sudden stratospheric warming (SSW) events, and stratospheric circulation spring break-up date changes during boreal winters from 2015 to 2100. Comparison of averages over two periods of 2080–2100 and 2015–2035 revealed that temperature will decrease from 1° in the lower stratosphere to 4° in the upper stratosphere under moderate scenario and up to 11° under hard scenario. Cooling of stratosphere will be accompanied by strengthening of zonal circulation and planetary wave activity propagation in the middle – upper stratosphere that in turn leads to increase (stronger under hard scenario) of planetary wave with zonal wave number 1 amplitude (wavenumber 1). 13 major sudden stratospheric warming events and 16 very cold stratospheric winter seasons were revealed under hard scenario. Under both scenarios early spring break-up dates will be accompanied by stronger wavenumber 1 in comparison with winter seasons with later spring break-up dates. Strengthening of zonal mean meridional circulation is expected in the late XXI century