In recent years, polysaccharide-based biosensors have emerged as promising technologies for intelligent food packaging, offering innovative solutions to enhance food quality and safety. This review highlights advancements in designing, developing, and applying these biosensors, particularly those utilizing polysaccharides such as chitosan, cellulose and alginate. Engineered with nanomaterials like ZnO, silver, and carbon nano-tubes demonstrated high sensitivity in real-time monitoring of food spoilage indicators, including pH changes, volatile nitrogen compounds and microbial activity. We discuss the electrochemical properties of these biosensors, highlighting how the integration of electrochemical methods significantly improves their detection capabilities within packaging environments, leading to sensor sensitivity enhancement, greater accuracy, and spoilage detection, ultimately extending the shelf life of perishable food products. Additionally, the review addresses the practical challenges of industrial implementation and explores future research directions for optimizing sensor functionality and scalability. The findings underscore the potential of polysaccharide-based intelligent packaging as a sustainable and effective alternative to conventional methods, paving the way for broader commercial adoption.
Read full abstract