Photocatalytic technology is widely explored as a promising alternative for water treatments. However, low photocatalytic efficiency and selectivity usually limit its practical application. Herein, we develop the synthesis of two-dimensional zinc oxide (ZnO) nanosheets decorated with copper (Cu)-palladium (Pd) bimetallic nanoparticles (NPs) for the degradation of organic dyes in an aqueous solution. Compared to pristine ZnO nanosheets, the prepared CuPd/ZnO composites exhibited superior performance for the photocatalytic degradation of organic dyes under visible-light irradiation. The remarkable improvement of degradation activity was attributable to the enhanced separation and transfer efficiency of photogenerated charge carriers. The highest catalytic efficiency of CuPd/ZnO nanocomposite with the CuPd content of 0.5 wt% exhibited 95.3% removal of methyl orange (MO) (40 mg/L) within 45 min. From the experimental data, we believe this study provides a new avenue for the design and fabrication of high-performance photocatalysts capable of water treatments.