Aqueous Zn-metal battery is considered as a promising energy-storage system. However, uncontrolled zinc dendrite growth is the main cause of short-circuit failure in aqueous Zn-based batteries. One of the most efficient and convenient strategies to alleviate this issue is to introduce appropriate zincophilic nucleation sites to guide zinc metal deposition and regulate crystal growth. Herein, this work proposes Bi2O3/Bi nanosheets anchored on the cell wall surface of the 3D porous conductive host as the Zn deposition sites to modulate Zn deposition behavior and hence inhibit the zinc dendrite growth. Density functional theory and experimental results demonstrate that Bi2O3 has a super zinc binding energy and strong adsorption energy with zinc (002) plane, as a super-zincophilic nucleation site, which results in the deposition of zinc preferentially along the horizontal direction of (002) crystal plane, fundamentally avoids the formation of Zn dendrites. Benefiting from the synergistic effect Bi2O3/Bi zincophilic sites and 3D porous structure in the B-BOGC host, the electrochemical performance of the constructed Zn-based battery is significantly improved. As a result, the Zn anode cycles for 1500cycles at 50mAcm-2 and 1.0 mAhcm-2. Meanwhile, the Zn@B-BOGC//MnO2 full cell can operate stably for 2000 cycles at 2.0Ag-1.
Read full abstract