Stereolithography has been used to print zirconia ceramic crowns with acceptable dimensional accuracy and fracture force. However, studies that compared the fatigue resistance of zirconia crowns fabricated by stereolithography are lacking. The purpose of this invitro study was to compare the fracture and fatigue resistance of monolithic zirconia crowns printed by stereolithography apparatus (SLA) and digital light processing (DLP) with those of zirconia crowns milled by computer numerical control (CNC). A total of 120 crowns were fabricated (n=40/material) and underwent 0, 104, 105, or 106 dynamic loading cycles of 30 to 300 N in artificial saliva, followed by a static fracture loading test (n=10). After fracture, 1 crown from each group was selected for fractography analysis by scanning electron microscopy (SEM). Data were statistically analyzed through 2-way ANOVA and post hoc analysis for multiple comparisons (α=.05). The 2-way ANOVA results showed that the mean ±standard deviation force at fracture was the highest for CNC (before fatigue loading: 5154 ±568 N, 104: 5735 ±1231 N, 105: 5523 ±797 N, and 106: 6007 ±1258 N), followed by DLP (before fatigue loading: 3381 ±612 N, 104: 4046 ±1146 N, 105: 2929 ±559 N, and 106: 3223 ±739 N), and the lowest for SLA (before fatigue loading: 2956 ±598 N, 104: 2757 ±421 N, 105: 3326 ±391 N, and 106: 3103 ±246 N) (P<.01). The fracture force of the crowns was not significantly affected by the number of fatigue cycles (P>.05). Fractography analysis showed that the number of arrest lines increased for crowns of all 3 materials. SEM images also showed the steps of SLA and DLP from their layer-by-layer printing and small cracks between layers of SLA after 106 loading cycles. The fracture force of monolithic zirconia crowns milled by CNC was significantly higher than that of zirconia crowns printed by stereolithography. Zirconia crowns printed by SLA and DLP could withstand typical clinical conditions, and their fracture and fatigue resistance exceeded the clinically estimated average occlusal forces.
Read full abstract