The relationship between temperature (T) and diversity is one of the most important issues in ecology. It provides a key direction not only for exploring the determinants of diversity's patterns, but also for understanding diversity's responses to climate change. Previous studies suggested that T-diversity relationships could be positive, negative, or unimodal. Although these studies accumulated many informative achievements, they might be unsatisfied due to (1) investigating inadequate range of T, (2) selecting incomplete diversity metrics, and (3) making insufficiently detailed analysis of correlation. In this study, species diversity is estimated by four most commonly used diversity metrics and three parameters of species abundance distribution (SAD), and two global datasets of marine phytoplankton (covering a wider range of T) are used to evaluate the T-diversity relationships according to a piecewise model. Results show that all aspects of diversity (except evenness) have the similar relationship with T in the range of lower T, noting that diversity significantly increases as T increases. However, in the range of higher T, diversity may significantly decrease or nearly constant, which indicates that their relationships may be the unimodal or asymptotic. The asymptotic relationship found by this study is assumed that increasing diversity with T will gradually approach the Zipf's law (1:1/2:1/3…). If such assumption can be verified by future investigations, the intrinsic mechanism of the asymptotic relationship is likely to be crucial in understanding the T-diversity relationships.
Read full abstract