The development of energy harvesters based on inexpensive inorganic materials has attracted considerable attention to envisage next-generation self-powered electronic devices. In this work, we presented surface modification of ZnO nanorods (NRs) by thermochemical reaction using photoresist (PR) as an etching source. The morphological and microstructural properties of surface-etched ZnO NRs (M: ZnO) were systematically studied in detail through SEM and HRTEM. The morphological results show that the surface-etched NRs possess nanofiber-like porous structures and are penetrated throughout the NRs with high surface area. We fabricated triboelectric nanogenerators (TENG) using M: ZnO NRs with poly (dimethylsiloxane) (PDMS) as negative triboelectric material and mica as positive triboelectric material. The prepared M: ZnO NR TENG successfully delivered an output voltage of up to 20 V and a current density of 3.2 μA cm−2, which is ∼1.5 times higher than those observed for smooth ZnO NRs, respectively. The prepared M: ZnO NR TENG device can be able to lit 24 red light-emitting diodes (LEDs) as the power source. Finally, to demonstrate the practical applications of M: ZnO NR TENG, it was attached to the human body (elbow, knee, wrist, and heel) and efficiently harvested the energy from daily human activities.