Introduction This study examines the geographic distribution and temporal trends of Zika virus (ZIKV) outbreaks in India from 2016 to 2023 using data from the Integrated Disease Surveillance Programme (IDSP). The burden of ZIKV in India has risen due to its rapid spread and significant health impacts. Existing literature highlights seasonal and geographic patterns but lacks a comprehensive, long-term analysis specific to India. This study addresses this gap by analyzing trends over seven years to inform better public health responses. Methods A secondary data analysis was conducted using publicly available data from the IDSPon reported Zika cases from January 2016 to December 2023. Descriptive statistical methods and geographic information system(GIS) mapping techniques were employed to analyze the geographic distribution and temporal trends of ZIKVoutbreaks in India. The data were analyzed and visualized using R software version 4.3.2 (R Foundation for Statistical Computing, Vienna, Austria), with heat maps and choropleth maps to identify hotspots, and line diagrams to identify temporal trends. Results Zika outbreaks predominantly occurred during the post-monsoon season, accounting for 47.62% (n= 10) of the total 21 outbreaks, followed by the monsoon season with 33.33% (n = 7), and summer with 19.05% (n = 4). Two deaths were reported during a significant outbreak in Madhya Pradesh in 2018. Temporal trends indicated notable spikes in cases in 2018 (131 cases) and 2021 (234 cases), with no cases reported in 2019 and 2020. The geographic distribution maps highlighted significant concentrations of ZIKV outbreaks in specific districts within Uttar Pradesh, Madhya Pradesh, and Kerala. Discussion The study identified seasonal patterns, with most cases occurring in the post-monsoon season. The geographic spread of the ZIKV was observed in eight states from 2016 to 2023. GIS identified three hotspots in Uttar Pradesh, Madhya Pradesh, and Kerala. Conclusion The study highlights the need for heightened surveillance and targeted intervention preparedness during high-risk seasons. Enhancing testing facilities and data reporting systems could improve outbreak identification, management, and response.
Read full abstract