Letj vk ′ denotes thekth positive zero of the derivativeJ v ′ (x)=dJ v (x)/dx of Bessel functionJ v (x) fork=1, 2,…. We establish the upper bound $$j'_{\nu k}< \nu + a_k \left( {\nu + \frac{{{\rm A}_k^3 }}{{a_k^3 }}} \right)^{\frac{1}{3}} + \frac{3}{{10}}a_k^2 \left( {\nu + \frac{{A_k^3 }}{{a_k^3 }}} \right)^{\frac{1}{3}} , \nu \geqslant 0, k = 1,2, \ldots $$ whereA k =2a k √2a k /3,a k =x k ′ 2−1/3 andx k ′ is thekth positive zero the derivativeAi′(x) of the Airy functionAi(x). This bound is sharp for large values ofv and improves known results. Similar inequality holds for thekth positive zeroy vk ′ ofY v ′ (x), too, whereY v (x) denotes the Bessel function of second kind.
Read full abstract