This paper described that the stator current-based model reference adaptive system (MRAS) speed estimator is used for the induction motor (IM) indirect vector speed control without a mechanical speed sensor. Due to high sensitivity of motor parameters variation at low speed including zero, stability analysis of MRAS design is performed to correct any mismatch parameters value in the MRAS performed to estimate the motor speed at these values. As a result, the IM sensorless control can operate over a wide range including zero speed. The performance of the stator current-based MRAS speed estimator was analyzed in terms of speed tracking capability, torque response quickness, low speed behavior, step response of drive with speed reversal, sensitivity to motor parameter uncertainty, and speed tracking ability in the regenerative mode. The system gives a good performance at no-load and loaded conditions with parameter variation. The stator current-based MRAS estimator sensorless speed control technique can make the hardware simple and improve the reliability of the motor without introducing a feedback sensor, and it becomes more important in the modern AC IM. The sensorless vector control operation has been verified by simulation on Matlab and experimentally using Texas Instruments HVMTRPFCKIT with TMS320 F28035 DSP card and 0.18 kw AC IM.