Plant height is a critical biophysical trait indicative of plant growth and developmental conditions and is valuable for biomass estimation and crop yield prediction. This study examined the effects of flight altitude and camera angle in quantifying cotton plant height using unmanned aerial system (UAS) imagery. This study was conducted in a field with a sub-surface irrigation system in Lubbock, Texas, between 2022 and 2023. Images using the DJI Phantom 4 RTKs were collected at two altitudes (40 m and 80 m) and three sensor angles (45°, 60°, and 90°) at different growth stages. The resulting images depicted six scenarios of UAS altitudes and camera angles. The derived plant height was subsequently calculated as the vertical difference between the apical region of the plant and the ground elevation. Linear regression compared UAS-derived heights to manual measurements from 96 plots. Lower altitudes (40 m) outperformed higher altitudes (80 m) across all dates. For the early season (4 July 2023), the 40 m altitude had r2 = 0.82–0.86 and RMSE = 2.02–2.16 cm compared to 80 m (r2 = 0.66–0.68, RMSE = 7.52–8.76 cm). Oblique angles (45°) yielded higher accuracy than nadir (90°) images, especially in the late season (24 October 2022) results (r2 = 0.96, RMSE = 2.95 cm vs. r2 = 0.92, RMSE = 3.54 cm). These findings guide optimal UAS parameters for plant height measurement.
Read full abstract