Repeatable and reliable assessment of corneal biomechanics with spatial resolution remains a challenge. Vibrational Optical Computerized Tomography (V-OCT), based on sound-wave elastography, has made it possible to investigate the natural resonant modes of the cornea and obtain the elastic moduli non-invasively. This pilot study presents a characterization of four corneal vibrational modes from aberrometric, geometrical, and biomechanical approaches in the living human cornea of five healthy volunteers by combining a corneal sound-wave generator, dual Placido–Scheimpflug corneal imaging, and the Ocular Response Analyzer (ORA) devices. Sound-induced corneal wavefront aberration maps were reconstructed as a function of sound frequency and isolated from the natural state. While maps of low-order aberrations (LOA) revealed symmetric geometrical patterns, those corresponding to high-order aberrations (HOA) showed complex non-symmetric patterns. Corneal geometry was evaluated by reconstructing corneal elevation maps through biconical fitting, and the elastic and viscous components were calculated by applying the standard linear solid model to the ORA measurements. The results showed that sound-wave modulation can increase high-order corneal aberrations significantly. Two frequencies rendered the corneal shape more prolate (50 Hz) and oblate (150 Hz) with respect to the baseline, respectively. Finally, both the elastic and viscous properties are sensitive to sound-induced vibrational modes, which can also modulate the corneal stress-strain response. The cornea exhibits natural resonant modes influenced by its optical, structural, and biomechanical properties.
Read full abstract