We examine a complex singlet scalar extension of the Standard Model (CxSM) with an extra singlet fermion. Both the singlet scalar and fermion are dark matter (DM) candidates. It is known that although the scalar potential in the CxSM can realize strong first-order electroweak phase transition, the scalar DM included in the model gives only a tiny amount of the relic density compared to the observed one. Therefore, a fermion DM is introduced to compensate for the lack of relic density. We find that the scattering of the fermion DM and nucleons is sufficiently suppressed when the masses of scalar mediators are degenerate, as is the case of the scalar DM. We show the range of a combination of the mass and the Yukawa coupling of the fermion DM, which satisfies both the observed relic density and conditions of strong first-order electroweak phase transition.