High temperature hydrogen exposure is one of the most challenging material issues for nuclear thermal propulsion (NTP) fuel development. Under legacy NTP programs, ceramic-metallic (cermet) fuel forms with a refractory metal matrix and dispersed uranium dioxide (UO2) fuel particles were developed and showed promising performance following hot hydrogen testing. However, since the conclusion of those programs, established fabrication techniques, material feedstocks, and the ability to use highly enriched have been reduced or lost all together. In this study, a cermet consisting of a solid solution alloy of molybdenum with 30 wt percent tungsten (Mo30W) was fabricated using spark plasma sintering. Fabrication process parameters were selected to optimize the cermet microstructure using lessons learned from historic NTP programs. Yttria stabilized zirconia particles (50 to 70 % volumetric loading) were used as a fuel particle surrogate. To evaluate whether as-fabricated microstructures exhibited similar resilience as legacy cermet fuels to a hot hydrogen environment, samples were exposed to hot flowing hydrogen from 1920 to 2500 °C (∼2290 to 2770 K). The cermets performed well with minimal mass loss, minor to no cracking, and good retention of internal surrogate particles. Based on these findings, recommendations for future studies with Mo30W-UO2 cermets as an NTP fuel form are provided.
Read full abstract