BackgroundGraphene aerogels (GA), known for their exceptional lightweight and sturdy characteristics, present a promising avenue for improving thermal energy (TE) storage and transfer efficiency. It might be possible to make better thermal management systems in fields like electronics, aerospace, and energy storage by studying how heat flux (HF) affects the strength and stability of graphene aerogels. MethodsThe study used molecular dynamics (MD) simulation to investigate how the mechanical properties of graphene aerogels strengthened with paraffin as phase change material (PCM) change in response to external heat flux (EHF). These simulation methods provided a detailed view of molecular interactions and dynamics at the atomic level, allowing researchers to understand the behavior of materials under various conditions. The change in toughness, interaction energy (IE), Young's modules (YM), and ultimate strength (US) was examined for this reason. Significant findingsThe results indicate that when the HF increased from 0.1 to 0.3 W/m2, the ultimate strength and Young's modules increased from 8.91 and 5.37 GPa to 14.546 and 8.59 GPa, respectively. These values declined when HF increased by more than 0.3 W/m2. When EHF went up to 0.3 W/m², these graphene aerogel properties went up. This was because the atoms moved around more and there were more bonding contacts among the graphene sheets, which made the structure of material stronger. However, at heat flux levels exceeding 0.3 W/m², excessive thermal energy may lead to thermal degradation, causing bond breakage and loss of structural integrity, ultimately resulting in a decrease in these mechanical properties. Also, the results reveal that interaction energy increased from -1522.098 to -1546.325 eV as external HF increased to 0.3 W/m2. The thermal motion of atoms enhanced as the HF increased, enabling closer clustering and better alignment of graphene sheets, thereby strengthening their interactions. This study gave us useful information about how to improve the mechanical properties of graphene aerogels in different HF conditions. This made it more likely that these materials can be used in energy storage systems and thermal management.
Read full abstract