Abstract

This paper presents the results of studies on the pervaporation properties (for benzene/hexane mixtures) and gas permeability (for He, H2, N2, O2, CO2, CH4, C2H6, and C4H10) of ladder-like polyphenylsesquioxanes (L-PPSQ) with improved physical and chemical properties. These polymers were obtained by condensation of cis-tetraphenylcyclotetrasiloxanetetraol in ammonia medium. The structure of L-PPSQ was fully confirmed by a combination of physicochemical analysis methods: 1H, 29Si NMR, IR spectroscopy, HPLC, powder XRD, and viscometry in solution. For the first time, a high molecular weight of the polymer (Mn = 238 kDa, Mw = 540 kDa) was achieved, which determines its improved mechanical properties and high potential for use in membrane separation. Using TGA and mechanical analysis methods, it was found that this polymer has high thermal (Td5% = 537 °C) and thermal-oxidative stability (Td5% = 587 °C) and good mechanical properties (Young's module (E) = 1700 MPa, ultimate tensile stress (σ) = 44 MPa, elongation at break (ε) = 6%), which is important for making membranes workable under various conditions. The polymer showed a high separation factor for a mixture of 10% wt. benzene in n-hexane (126) at a benzene flow of 33 g/(m2h).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.