Metallic Sn (Tin) is a promising anode material for Na-ion batteries owing to its high theoretical capacity of 870mAhg-1. However, its large volumetric changes, interfacial instability, and sluggish sodiation kinetics limit its practical applications. Herein, a hierarchical yolk-shell nanohybrid composed of an Sn yolk and a Carbon/Silicon oxycarbide (C/SiOC) bilayer shell is prepared via the simple pyrolysis of a silicone oil dispersion containing an Sn precursor. The multifunctional bilayer helps boost sodiation kinetics by providing conductive pathways, enhancing the reversible capacity through surface capacitive reactions, and stabilizing the electrode/electrolyte interface. Abundant void interspaces inside the yolk-shell structure accommodate large volume changes of the Sn yolk. The Sn@C/SiOC nanohybrid demonstrates high specific capacity (≈500mAhg-1 at 1Ag-1), remarkable rate performance up to 10Ag-1, and ultrastable cyclability (91.1% retention after 1500 cycles at 5Ag-1). This yolk-shell nanohybrid structuring can guide the development of various high-capacity anodes for energy storage applications.