Abstract
Porous materials, characterized by their controllable pore size, high specific surface area, and controlled space functionality, have become cross-scale structures with microenvironment effects and multiple functions and have gained tremendous attention in the fields of catalysis, energy storage, and biomedicine. They have evolved from initial nanopores to multiscale pore-cavity designs with yolk-shell, multishells, or asymmetric structures, such as bottle-shaped, multichambered, and branching architectures. Various synthesis strategies have been developed for the interfacial engineering of porous structures, including bottom-up approaches by using liquid-liquid or liquid-solid interfaces "templating" and top-down approaches toward chemical tailoring of polymers with different cross-linking degrees, as well as interface transformation using the Oswald ripening, Kirkendall effect, or atomic diffusion and rearrangement methods. These techniques permit the design of functional porous materials with diverse microenvironment effects, such as the pore size effect, pore enrichment effect, pore isolation and synergistic effect, and pore local field enhancement effect, for enhanced applications. In this review, we delve into the bottom-up and top-down interfacial-oriented synthesis approaches of porous structures with advanced structures and microenvironment effects. We also discuss the recent progress in the applications of these collaborative effects and structure-activity relationships in the areas of catalysis, energy storage, electrochemical conversion, and biomedicine. Finally, we outline the persisting obstacles and prospective avenues in terms of controlled synthesis and functionalization of porous engineering. The perspectives proposed in this paper may contribute to promote wider applications in various interdisciplinary fields within the confined dimensions of porous structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.