Hazelnut (Corylus avellana L.) is an economically and socially important product for Turkey, the country that leads global production of this crop. The preservation of Turkish hazelnut genetic diversity and informed breeding of new cultivars are crucial for maintaining quality and crop yield stability. In this study, genotyping by random amplicon sequencing (GRAS-Di) was used to identify single-nucleotide polymorphisms (SNPs) in a panel of 96 individuals representing the Turkish national hazelnut collection. The resulting 7609 high-quality SNPs were physically mapped to the Tombul cultivar reference genome and used for population structure and diversity analyses. These analyses revealed that cultivars are not less diverse than wild accessions and that 44% of the panel had admixed ancestry. The results also indicated that recently released Turkish cultivars are highly similar to each other, suggesting that diversity analysis is an important tool that should be employed to prevent future genetic bottlenecks in this crop. A minimal marker algorithm was used to select a set of seven SNP markers that were capable of differentiating the panel accessions. These fingerprinting markers should be useful for the propagation of true-to-type elite cultivars that can be used to renew Turkey's aging hazelnut orchards.
Read full abstract