In this study, the impact of culture media filtrate of QD3 actinobacterial isolate on two potato cultivars, Spunta and Diamond, infected with potato virus Y (PVY) was investigated. Various parameters, including infection percentage, PVY virus infectivity, disease severity scoring, PVY optical density, photosynthetic and defense-related biochemical markers, enzymatic profiling, phenolic compounds, proline content, salicylic acid levels, and growth and yield parameters, were assessed to elucidate the potential of the QD3 actinobacterial isolate culture filtrate in mitigating PVY-induced damage. The physiological and biochemical characteristics of the QD3 actinobacterial isolate, including its salinity tolerance, pH preferences, and metabolic traits, were investigated. Molecular identification via 16S rRNA gene sequencing confirmed its classification as Streptomyces fradiae QD3, and it was deposited in GenBank with the gene accession number MN160630. Distinct responses between Spunta and Diamond cultivars, with Spunta displaying greater resistance to PVY infection. Notably, pre-infection foliar application of the QD3 filtrate significantly reduced disease symptoms and virus infection in both cultivars. For post-PVY infection, the QD3 filtrate effectively mitigated disease severity and the PVY optical density. Furthermore, the QD3 filtrate positively influenced photosynthetic pigments, enzymatic antioxidant activities, and key biochemical components associated with plant defense mechanisms. Gas chromatography‒mass spectrometry (GC‒MS) analysis revealed palmitic acid (hexadecanoic acid, methyl ester) and oleic acid (9-octadecanoic acid, methyl ester) as the most prominent compounds, with retention times of 23.23 min and 26.41 min, representing 53.27% and 23.25%, respectively, of the total peak area as primary unsaturated fatty acids and demonstrating antiviral effects against plant viruses. Cytotoxicity assays on normal human skin fibroblasts (HSFs) revealed the safety of QD3 metabolites, with low discernible toxicity at high concentrations, reinforcing their potential as safe and effective interventions. The phytotoxicity results indicate that all the seeds presented high germination rates of approximately 95–98%, suggesting that the treatment conditions had no phytotoxic effect on the Brassica oleracea (broccoli) seeds, Lactuca sativa (lettuce) seeds, and Eruca sativa (arugula or rocket) seeds. Overall, the results of this study suggest that the S. fradiae filtrate has promising anti-PVY properties, influencing various physiological, biochemical, and molecular aspects in potato cultivars. These findings provide valuable insights into potential strategies for managing PVY infections in potato crops, emphasizing the importance of Streptomyces-derived interventions in enhancing plant health and crop protection.
Read full abstract