Compressed-air vehicles have the advantages of zero pollution and low cost. A compressed-air engine test bench is established in this study. The effects of rotational speed, torque, and regulated pressure on the power performance, economy, and energy conversion efficiency of the pneumatic motor are investigated. The differences in power output, compressed-air consumption rate, and energy conversion efficiency between forward and reverse rotation of the pneumatic motor are compared and analyzed. To effectively investigate the performance of a compressed-air vehicle under various road conditions, this study compares and analyzes the power performance, economy, and energy conversion efficiency of pneumatic motors under different road conditions. Experimental results show that the power output and energy conversion efficiency of the pneumatic motor in reverse rotation are less than those in forward rotation, indicating that the pneumatic motor has better power performance and higher efficiency with forward rotation than reverse rotation. The compressed-air consumption rate of the pneumatic motor with reverse rotation is higher than that with forward rotation, indicating that the pneumatic motor with forward rotation has better economic performance than with reverse rotation. The maximum power output and energy conversion efficiency of the pneumatic motor are about 1220 W and 13.23%, respectively.