This paper investigates the possibility to obtain yttrium aluminum garnet doped with cerium ions (YAG:Ce) phosphor, improve the emissive properties by modification with metal nanoparticles, followed by embedding into the polymer matrix, and deposition of nanocomposite on a flexible substrate to produce the white light by excitation with a blue chip. YAG:Ce yellow phosphor was obtained by a modified solid-state process, followed by in-situ anchoring of gold nanoparticles (Au@YAG). To deposit the phosphor on the flexible substrate, the Au@YAG nanocomposite was embedded in a poly(methyl methacrylate) (PMMA) matrix using the ex-situ method. The quality of the phosphor particles and composites was studied using FTIR spectroscopy, X-ray diffraction, and fluorescence spectroscopy. The applicability of the developed materials and the efficiency of methods were confirmed by the photometric studies performed on the composite film to determine the chromaticity coordinates, leading to the parameters of the semiconductor device that generates cold white light.
Read full abstract