Rice (Oryza species) is a commercial crop worldwide. Across Africa, the potential yield and quality of rice is diminished by a lack of high performance, locally adapted varieties, and the impact of rice yellow mottle virus (RYMV). The objective of this study was to assess the performance of a diverse collection of rice germplasm for RYMV resistance and agronomic traits, and to select promising lines for breeding for Tanzanian conditions. Fifty-four rice genotypes were field evaluated in two important rice production sites (Ifakara and Mkindo) in Tanzania, which are recognized as RYMV hotspots, using a 6 × 9 alpha lattice design with two replications. There was significant (p < 0.05) genotypic variation for agronomic traits and RYMV susceptibility in the tested germplasm. Seven genotypes with moderate to high RYMV resistance were identified, including Salama M-57, SSD1, IRAT 256, Salama M-55, Mwangaza, Lunyuki, and Salama M-19, which were identified as new sources of resistance genes. Positive and significant correlations were detected between grain yield and number of panicles per plant (NPP), panicle length (PL), number of grains per panicle (NGP), percentage-filled grains (PFG), and thousand-grain weight (TGW), which are useful traits for simultaneous selection for rice yield improvement. A principal component analysis allocated five principal components, accounting for 79.88% of the total variation present in the assessed germplasm collection. Traits that contributed most to variability included NPP, number of tillers/plant (NT), PL, grain yield (GY), and days to 50% flowering (DFL). The genotypes Rangimbili, Gigante, and SARO possess complementary agronomic traits and RYMV resistance, and can be recommended for further evaluation, genetic analysis, and breeding.
Read full abstract