The performance of blended yarns is affected by the distribution of component fibers within blended yarn and the blending uniformity. However, there is a lack of comprehensive and quantitative investigations on the relationship between them. In this paper, various specifications for two-component blended yarns were prepared, and the main factors affecting blending uniformity were analyzed. Then the yarn blending irregularity and yarn performance, including tenacity, tenacity coefficient of variation, extension and yarn unevenness were tested. Finally, Pearson correlation analysis and linear regression were performed between blending irregularity and each yarn performance to characterize the influence of blending uniformity on yarn performance quantitatively. The results show that the blending irregularity is effectively improved by uniform feeding of slivers, and increasing the passage of sliver blending. The blending irregularity has no significant influence on the relationship between twist factor and yarn performance. The blending irregularity has the most positive and highest effect on tenacity coefficient of variation, followed by tenacity and unevenness in third place, and the Pearson correlation coefficient ( P) were all above 0.5, and the linear regression coefficient was above 10−3, but the breaking extension was weakest and negatively correlated with blending irregularity. Except for breaking extension, the effect of blending irregularities on yarn performance becomes more obvious when there are large differences in fiber linear density and fiber length. This paper reveals the relationship between blending uniformity and yarn performance, to provide a basis for theoretical research on the properties of blended yarns.
Read full abstract