Abstract The weighted Yamabe problem introduced by Case is the generalization of the Gagliardo-Nirenberg inequalities to smooth metric measure spaces. More precisely, given a smooth metric measure space ( M , g , e − ϕ d V g , m ) \left(M,g,{e}^{-\phi }{\rm{d}}{V}_{g},m) , the weighted Yamabe problem consists on finding another smooth metric measure space conformal to ( M , g , e − ϕ d V g , m ) \left(M,g,{e}^{-\phi }{\rm{d}}{V}_{g},m) such that its weighted scalar curvature is equal to λ + μ e − ϕ ∕ m \lambda +\mu {e}^{-\phi /m} for some constants μ \mu and λ \lambda , satisfying a certain condition. In this article, we consider the problem of prescribing the weighted scalar curvature. We first prove some uniqueness and nonuniqueness results and then some existence result about prescribing the weighted scalar curvature. We also estimate the first nonzero eigenvalue of the weighted Laplacian of ( M , g , e − ϕ d V g , m ) \left(M,g,{e}^{-\phi }{\rm{d}}{V}_{g},m) . On the other hand, we prove a version of the conformal Schwarz lemma on ( M , g , e − ϕ d V g , m ) \left(M,g,{e}^{-\phi }{\rm{d}}{V}_{g},m) . All these results are achieved by using geometric flows related to the weighted Yamabe flow. We also prove the backward uniqueness of the weighted Yamabe flow. Finally, we consider weighted Yamabe solitons, which are the self-similar solutions of the weighted Yamabe flow.