Achromobacter marplatensis strain YKS2 isolated from the yak rumen has the feature of producing cellulose. This study aims to analyze the genome and safety of strain YKS2 in vivo, considering its future research and application prospects. The genome of strain YKS2 was sequenced and used for genomic in silico studies. The administration of strain YKS2 in three doses was carried out on mice for 3days of oral and 7days of clinical observation tests. The BW, FI, organ indices, gut microbiota, and histological appearances of organs and intestines, along with hematological parameters and serum biochemistry, were measured in mice. The chromosome size of strain YKS2 was 6,588,568bp, with a GC content of 65.27%. The 6058 coding sequences of strain YKS2 without plasmid were predicted and annotated and have multiple functions. The mice in all groups were alive, with good mental states and functional activities. Compared with the control group, there was no significant difference in the three dose groups on BW, FI, hematological parameters (WBC, LYM, etc.), and serum biochemistry (ALB, ALT, etc.). No abnormalities were observed in the main visceral organs, intestinal tissue, and V/C value in groups. However, the IEL number of duodenum and gut microbiota diversity (Shannon's index) in the high-dose group was significantly higher than in the control group (p < 0.05). Besides, the low dose of strain YKS2 also significantly affected the bacterial abundance of Firmicutes, Actinobacteria, and desulphurizing Bacteroidetes at the phylum level. There was no significant effect at genus levels in groups. In conclusion, the study revealedthe genome and potential functional genes of strain YKS2, which is beneficial to understanding the features of the A. marplatensis strain and proved strain YKS2 to be without acute toxicity to mice. However, a long-term feeding toxicity experiment in vivo should be performed to further ensure its potential application value strain in the animal industry.
Read full abstract