We aimed to improve the biocompatibility and osteoinductive potential of Ti implants using a simulated intraoral hydroxyapatite (HAp) coating. We devised a novel surface treatment for aggressive induction of osteoblast adhesion and bone regeneration on the implant surface. A thin α-tricalcium phosphate (α-TCP) film was deposited on the implant surface using a pulsed Er:YAG laser. The coating was converted to HAp through artificial saliva immersion, which was confirmed using scanning electron microscopy (SEM) and X-ray diffraction (XRD). SEM showed needle-like HAp crystals on the Ti disks and sandblasted implant surfaces after immersion in artificial saliva for 96 h. Microcomputed tomography and histological evaluation 4 and 8 weeks after implantation into beagle dog mandibles showed that the HAp-coated implant was biocompatible and exhibited superior osteoinduction compared to that of sandblasted implants. Coating the implant surface with HAp using an Er:YAG laser has potential as a new method of the implant-surface debridement.
Read full abstract