Ethiopia is considered to be a putative migratory corridor for both Near-East Bos taurine and Arabian and Indian B. indicus cattle into East Africa. African pastoralism, which is associated with adaptation to specific habitats and farming systems, has contributed to the composite constitution of Ethiopian cattle. We analyse, for the first time, five Y-chromosome microsatellite markers from seven north Ethiopian cattle populations, using a European Holstein-Friesian population as a reference, to assess the paternal gene pool and to explore the mechanisms behind the genetic structure. Our results reveal that the indicine alleles predominate in the present populations, with only one animal in the Arado carrying the taurine alleles. The north Ethiopian cattle populations with one exception (Abergelle) are characterized by a general low Y-chromosome haplotype diversity, as well as by a reduced interpopulation variance (Phi(ST)=4.0%), which can be a result of strong male-mediated selective sweeps. Population structure revealed by multidimensional-scaling analysis differentiates two populations (Arado and Abergelle) from the rest. Analysis of molecular variance does not lend support to the traditional classification for the populations, which is mainly based on physical characteristics. A network analysis indicates two closely related founding haplotypes accounting for a large proportion (50.0% in Abergelle and 85.0-94.7% in others) of north Ethiopian cattle Y-chromosomes. Our findings point to a common, but limited, paternal origin of the north Ethiopian cattle populations and strong male-mediated gene flow among them. The findings also provide insight into the historical immigration of cattle into East Africa.
Read full abstract