The relationship between the degree of aerobiosis, xylitol production and the initial two key enzymes of d-xylose metabolism were investigated in the yeasts Pichia stipitis, Candida shehatae and C. tenuis. Anoxic conditions severely curtailed growth and retarded ethanol productivity. This, together with the inverse relationship between xylitol accumulation and aeration level, suggested a degree of redox imbalance. The ratios of NADH- to NADPH-linked xylose reductase were similar in all three yeasts and essentially independent of the degree of aerobiosis, and thus did not correlate with their differing capacities for ethanol production, xylitol accumulation or growth under the different conditions of aerobiosis. Under anoxic conditions the enzyme activity of Pichia stipitis decreased significantly, which possibly contributed to its weaker anoxic fermentation of xylose compared to C. shehatae.