Water stress integral (WSI) is a method of assessing cumulative plant water stress over a chosen period of time. While the technique has been used in other tree species, it has not been applied for reforestation projects. In this study we used the WSI approach for newly planted Douglas-fir in the Pacific Northwest (USA), where the Mediterranean climate, plant community development, and competition for water all play key roles in the success of establishment efforts. In this study, previously reported seedling growth, xylem water potential, and soil moisture data were utilized to provide direct correlations between Douglas-fir productivity, soil water availability and WSI. For each growing season, a strong relationship between WSI and volume growth as well as a strong linear relationship between WSI and soil moisture measured during mid-August was found. On average, for each reduction of 0.01 cm3 cm−3 in soil moisture measured during mid-August, Douglas-fir seedling volume growth decreased by 5.6 and 7.7% in the first and second growing seasons, respectively. Preserving soil moisture until early-August through the judicial application of vegetation management regimes was critical for maximizing stand productivity. Based on these results, a single evaluation of soil volumetric water content during early-August can be used as a predictor of stand productivity during the initial two seasons of forest establishment.