In our previous paper (J. Phys. Chem. B 2005, 109, 757) it was illustrated that the 129Xe NMR spectra of xenon dissolved in acetonitrile confined into mesoporous materials give detailed information on the system, especially about the pore sizes. A resonance signal originating from xenon atoms sited in very small cavities built up inside the pores during the freezing transition (referred to as signal D) turned out to be highly sensitive to the pore size. The emergence of this signal reveals the phase transition temperature of acetonitrile inside the pores, which can also be used to determine the size of the pores. In addition, the difference in the chemical shifts of two other signals arising from xenon dissolved in bulk and confined acetonitrile (B and C) provides another method for determining the pore sizes. In the present work, the observed correlations have been investigated using an extensive set of measurements with a variety of porous materials (silica gels and controlled pore glasses) with the mean pore diameters ranging from 43 to 2917 A. The usefulness of the correlations has been demonstrated by calculating the pore size distributions from the spectral data. The distributions are in agreement with those reported by the manufacturers, when the mean pore diameter is smaller than approximately 500 A. In addition, it has been shown that the porosity of the materials can be determined by comparing the intensities of the signals arising from the bulk and confined liquid. When acetonitrile is replaced by cyclohexane in the sample, the dependence of the chemical shift difference between the B and C signals on the pore size becomes more sensitive, but no D signal appears below the freezing point. In addition, the influence of xenon gas on the melting points of bulk and confined acetonitrile has been studied by 1H NMR cryoporometry. The measurements show that the temperature of the latter transition lowers slightly more, and consequently affects the pore sizes calculated by means of the difference in the phase transition temperatures. Hysteresis in the phase transitions in a cooling-warming cycle has also been studied as a function of the temperature stabilization time by 129Xe NMR of xenon dissolved in acetonitrile.
Read full abstract